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Background & Motivation
-Hypoxia linked to eutrophication
-Understand hypoxia response to nutrients

Chesapeake Bay Hypoxia Trends & Controls
-Chesapeake Bay Background
-Hypoxia & Nutrient Trends

Hypoxia-Nutrient “Regime shift” in Chesapeake Bay?
-Response trajectories
-Possible explanation: Enhanced N-Recycling

Concluding Comments



Global Scale Spread of Coastal Hypoxia
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» Global distribution of coastal hypoxia

 Hypoxia concentrated near intense human activities

» Global spread of hypoxia related to eutrophication

» Other processes (e.g., climate change) also important



Chesapeake Bay
Physical Features

e Large ratio of watershed
to estuarine area (~ 14:1)

* Deep channel is
seasonally stratified

* Broad shallows flank
channel (mean Z = 6.5m)

* Relatively long water
residence time (~ 6 mo)
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Stratification Control of Hypoxia

Susg. R. MD/VA Atlantic

* Pynocline controls position & intensity of low O, water.
e Landward transport replenishes deep O, pools.

(Hagy 2002)



Trend in Bay Summer Hypoxia Volume (1950-2004)
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» Exponential increase, w/ strongest change since 1980
e Interannual variability driven by high and low river flow



Volume of Summer Hypoxia Related to River Flow
and N Loading: Regime Shift in Early 1980s

* Volumes of summer hypoxia
(<1 mg/L) and anoxia (< 0.5
mg/L) related to winter-spring
river flow.

* Abrupt increase in slope of
hypoxia-nitrate relation for
1950-1980 and 1980-2003
(hypoxia per NO; Load)

 What factors drive this abrupt
regime shift?

(Hagy et al. Estuar. & Coast. 2004,

Kemp et al. MEPS. 2005)
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Response of Hypoxia to Nutrient Remediation?

Linear Recovery Threshold Recovery
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Interannual Variations in River Flow:
Selecting Years within 1 SD
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Focusing on Years of Intermediate River Flow
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e To reduce inter-annual variance,
we analyzed only years with
Intermediate flow (mean + SE).

e From 1960-2006, both NO,-Load
and Hypoxia increase steadily

 Hypoxia increases more rapidly
than NO,-Loading

* Hypoxia volume per NO;-Load
relatively constant until 1980.

e Shifts-up in mid-1980’s and
remains high through early
2000s



Bay Hypoxia Response Trajectories for
Changes in Nitrogen Loading
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*Visualize response trajectories and regime shifts
*Shift-up to new Upper Regime in 1980 with more Hypoxia per N-Load
*Recent apparent down-shift to Lower Regime (initial recovery?)



Potential Explanations for Observed Shift In
Relationship between Hypoxia & N-Loading

 Loss of oyster grazing on phytoplankton
 Loss of seagrass & marsh “nutrient trapping”
e Climate-induced changes (temperature, circulation)

« Enhanced nutrient recycling efficiency under low O,



Conceptual Model of O, Interactions with N-Cycle

Normoxic Conditions Hypoxic Conditions

NH}

(J. Testa & M. Kemp 2009)



Decadal Change in July Distribution of [NH,*]
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(Rebecca Murphy, JHU. unpublished)




Hypoxia Enhancement of Benthic
Nutrient (NH,*) Recycling Efficiency
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* DIN ‘Recycling Efficiency’ (NRE)
is flux ratio (DIN/(DIN + N,)

* NRE increases w/ decreasing O,
because of nitrification inhibition

* Thus, DIN recycling higher
under hypoxic conditions.

(J. Cornwell data from Kemp et al. MEPS. 2005)



Significant Shift in Bottom Water NH,
Pools Since Early 1980s
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*Bottom-water NH, pools
generally increase with
TN loading.

* In early 1980s the size
of the bottom NH, pools
Increased (>2x) abruptly

*Biogeochemical change
(hypoxia, macrofauna?)



Changes in Bay’s Bottom Water NH,
with Nutrient Loading and Hypoxia
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 TN-loading increases until mid-
1980s, then fluctuates & declines

 Anoxia volume fluctuates, but
Increases steadily into 2000s.

*Bottom-water NH, pool per N-load
fluctuations & jumps up in 1980s



Hypoxia Response to Changes in N-Load
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Concluding Comments

» Coastal Hypoxia is Global Problem Associated with Eutrophication
» Chesapeake Bay may be Particularly Susceptible to Hypoxia

» Chesapeake Hypoxia has Grown with Increasing Nutrient Loading;
an abrupt Increase occurred in Hypoxia/N-load in early 1980s

* |t appears that Hypoxia-Enhanced N-recycling has Contributed to this
“Regime Shift” and/or the Recalcitrance for Restoration

* There may be Reason for “Cautious Optimism” for Hypoxia Recovery;
possibly, a “Shift-Down” to Lower Regime with Less Hypoxia per N-Load



